
- 2025-01-21 09:33:05微流控壓電技術
- 微流控壓電技術是一種結合微流控芯片與壓電效應的技術。它利用壓電材料在電場作用下的形變特性,精確控制微通道內的流體流動。該技術具有高精度、快速響應和低能耗等優點,廣泛應用于微量樣品處理、生物分子分離、藥物篩選等領域。通過壓電泵或壓電閥等器件,實現流體的精確輸送、混合和分配,為微流控系統的自動化和集成化提供了有力支持。在生物醫學、化學分析及環境監測等方面展現出巨大潛力。
資源:14712個 瀏覽:10次展開
微流控壓電技術相關內容
微流控壓電技術文章
微流控壓電技術產品
產品名稱
所在地
價格
供應商
咨詢
- 法國Elveflow微流控液體流量傳感器MFS
- 國外 歐洲
- 面議
-
泰初科技(天津)有限公司
售全國
- 我要詢價 聯系方式
- 法國Elveflow微流控精密壓力進樣泵OB1 MK3+
- 國外 歐洲
- 面議
-
泰初科技(天津)有限公司
售全國
- 我要詢價 聯系方式
- 微流控蠕動泵PeriWave pump
- 國外 美洲
- 面議
-
泰初科技(天津)有限公司
售全國
- 我要詢價 聯系方式
- 法國Elveflow微流控流量傳感器BFS(不需要校準,直接測量)
- 國外 歐洲
- 面議
-
泰初科技(天津)有限公司
售全國
- 我要詢價 聯系方式
- 法國Elveflow微流控壓力傳感器MPS
- 國外 歐洲
- €1560
-
泰初科技(天津)有限公司
售全國
- 我要詢價 聯系方式
微流控壓電技術問答
- 2023-08-14 11:23:11用于片上生物工廠的基于液滴微流控的集成分散相顯微鏡
- 2% surfactants表面活性劑FluoSurfIn the droplet generation unit, highly monodisperse droplets encapsulating H. lacustris cells are generated on demand. The buffer with suspended H. lacustris cells and biocompatible fluorescence oil (HFE-7500) with 2% surfactants (FluoSurf, Emulseo) are employed as the dispersed phase and the continuous phase, respectively.用于片上生物工廠的基于液滴微流控的集成分散相顯微鏡在代謝工程中,對單細胞胞內結構的生物分子成像以及隨后的細胞篩選有很高的要求,以開發具有所需表型的菌株。 然而,當前方法的能力僅限于群體規模的細胞表型鑒定。 為了應對這一挑戰,我們建議利用分散相顯微鏡與基于液滴的微流體系統相結合,該系統結合了液滴按需生成、生物分子成像和液滴按需分選,以實現細胞的高通量篩選 已識別的表型。 特別是,細胞被封裝在形成微流體液滴的均質環境中,并且可以研究生物分子誘導的分散相以指示單個細胞中特定代謝物的生物量。 因此,檢索到的生物量信息引導片上液滴分選單元篩選具有所需表型的細胞。 為了證明概念,我們通過促進湖紅球藻菌株向高產天然抗氧化劑蝦青素的進化來展示該方法。 所提出的系統具有片上單細胞成像和液滴操作功能的驗證揭示了高通量單細胞表型分析和選擇潛力,適用于許多其他生物工廠場景,例如生物燃料生產、細胞治療中的關鍵質量屬性控制等。本內容節選自下面文獻:Yingdong Luo, Yuanyuan Huang, Yani Li, Xiudong Duan, Yongguang Jiang, Cong Wang, Jiakun Fang,* Lei Xi,* Nam-Trung Nguyen and Chaolong Song, Dispersive phase microscopy incorporated with droplet-based microfluidics for biofactory-on-a-chip, Lab Chip, 2023,23, 2766-2777. DOI: 10.1039/D3LC00127J
54人看過
- 2021-07-02 11:14:03微流控/微流體納米顆粒與納米脂質體顆粒制備套裝
- ●GX合成納米顆粒/納米脂質體 高通量、單分散性和重復性●簡單可用的微流控系統 開箱即用、設置實驗裝置,然后開始實驗●生物醫學應用 合成用于藥物輸送的PLGA納米顆粒●套裝的多用途性 通過更換微流控芯片可實現不同的實驗項目如單乳液滴產生、納米脂質體、細胞培養等微流體納米顆粒合成套裝包括用于合成具有良好單分散性,高通量和可重現性的納米顆粒的所有微流體組件包含高精密壓力控制器和芯片。該套裝可用于合成單分散直徑小于200 μm的PLGA納米顆粒。通過更換不同規格的微流控芯片,同時保持微流控設備不變,您還可以合成單分散直徑更小如10 nm的納米顆粒。基于快速準確的OB1流量控制器和鞘液流微流控芯片,與傳統的實驗宏觀實驗相比,該套裝解決方案縮短了納米顆粒的合成時間和減少了試劑消耗。微流體納米粒子合成標準的微流控納米顆粒合成套裝包含兩通道壓力控制器OB1 MK3+,壓力通道泵送利用微流體動力流聚焦來實現納米顆粒合成過程中所需的兩種化學溶液。該鞘流納米顆粒合成允許受控的納米沉淀。流體反應的穩定性和動力學直接取決于微流體通道中的每種流體流速。通過多個低流量傳感器MFS或BFS,可以測量和調節管路中的液體流量。OB1 MK3+流量控制器是鞘流聚焦的ZJ解決方案,因為它是完全無脈沖的,而對于標準的廣泛使用的注射泵卻具有很大的脈沖流動。微流控納米沉淀技術可以實現良好的通量、單分散性以及可調的粒徑,并且通常可以更好地控制納米顆粒的合成。有關更多信息,請閱讀我們對微流體中納米顆粒合成的評論(https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidic-nanoparticle-synthesis-short-review/),或PLGA納米沉淀的評論(https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidics-for-plga-nanoparticle-synthesis-a-review/)。多功能套裝可確保不同組件之間的具有良好的兼容性,允許即插即用的方法,由單個定制化軟件控制,并可用于其他不同的實驗。該微流控納米顆粒合成套裝既適合初學者,也適合專家用戶。微流控納米顆粒合成套裝包含:1、OB1 MK3+流量控制器2、2個MFS流量傳感器3、2個儲液池4、1個微流控芯片5、所需配件:PTFE導管、過濾器、接頭連接器等6、ESI操作軟件為什么使用微流體產生納米顆粒?由于可精細調節微流體的流動性,使用微流體技術合成納米顆粒是降低納米顆粒直徑分散性的好方法。非常快的動力學對于例如合成聚合物納米顆粒的結晶和沉淀過程也是非常重要的。此外,微流體技術是減少納米顆粒合成所需的潛在有價值樣品的一種方法。總而言之,就時間、產率和分散性而言,使用微流體技術合成納米顆粒比宏觀的傳統實驗合成更加有效。由于微流控芯片已經小型化,因此,可以在更復雜的實驗平臺中實施納米粒子合成組分,以執行復雜且多功能的集成過程。PLGA納米粒子:(A)在PEG修飾的PLGA納米粒子中化學偶聯或化學ZL劑的簡單封裝。(B)PLGA納米粒子的TEM圖。Scale bar: 100 nm [1][1] Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011 Jan 31, 3(1), 3應用微流體鞘液連續流動納米沉淀原理已經顯示,微流體技術對于合成具有可調形狀和尺寸的有機和無機納米粒子特別有用[1]。您可以使用微流控納米顆粒合成套裝實現“自下而上”的納米顆粒合成方法,該方法通常包括三個階段:由聚合單體組成的納米顆粒成核,通過更多單體的聚集而使核生長并ZZ達到平衡[2-3]。與傳統的宏觀實驗合成相比,微流體合成納米顆粒具有更好的產率和更好的可調節性[4]。以PLGA納米沉淀為例,PLGA單體溶解在有機溶劑中,并芯片的中間通道。與表面活性劑混合的水溶液注入到芯片的鞘流通道中,以聚焦PLGA流體流。通過擴散形成濃度梯度和PLGA納米顆粒沉淀,因為PLGA分子不溶于水[5]。還已經使用微流控技術合成了其他納米顆粒,例如用于表面等離子共振(SPR)的金屬納米顆粒[6]和 聚二乙炔納米顆粒[7]。1. Ma, J., et al., Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab Chip, 2017. 17(2): p. 209-226.2. Karnik, R., et al., Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett, 2008. 8(9): p. 2906-12.3. Lababidi, N., Sigal, V., Koenneke, A., Schwarzkopf, K., Manz, A., & Schneider, M. (2019). Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein Journal of Nanotechnology, 10, 2280–2293.4. Visaveliya, N. and J.M. K?hler, Single-step microfluidic synthesis of various nonspherical polymer nanoparticles via in situ assembling: dominating role of polyelectrolytes molecules. ACS Appl Mater Interfaces, 2014. 6(14): p. 11254-64.5. Donno, R., Gennari, A., Lallana, E., De La Rosa, J. M. R., D’Arcy, R., Treacher, K., Hill, K., Ashford, M., & Tirelli, N. (2017). Nanomanufacturing through microfluidic- assisted nanoprecipitation: Advanced analytics and structure-activity relationships. International Journal of Pharmaceutics, 534(1–2), 97–107.6. Boken, J., D. Kumar, and S. Dalela, Synthesis of Nanoparticles for Plasmonics Applications: A Microfluidic Approach. Synthesis and Reactivity in Inorganic, Metal- Organic, and Nano-Metal Chemistry, 2015. 45(8): p. 1211-1223.7. Baek, S., et al., Nanoscale diameter control of sensory polydiacetylene nanoparticles on microfluidic chip for enhanced fluorescence signal. Sensors and Actuators B: Chemical, 2016. 230: p. 623-629.配置您的微流體納米顆粒和納米脂質體產生套裝微流控納米顆粒/納米脂質體合成套裝是高度可定制的,可以采用不同的微流控芯片合成不同規格的納米顆粒或納米脂質體。例如,微流控芯片合成后的流體通道更長或有更大的反應空間。鞘液流芯片的材質有PMMA或COP兩種材料,這兩種材料都是光學透明的,并且與大多數的納米顆粒合成協議相兼容。此外,如果需要用到負壓的流體控制,您可以在現有的套裝設備里面升級您的流量控制器OB1,將其升級到OB1 DUAL正壓和負壓功能,同時您還可以選擇不同規格的儲液池如從1.5 mL Eppendorf管到100 mL玻璃瓶。當然,您還可以選擇科式流量傳感器BFS來代替MFS,以進一步改善流量控制。微流控人字形玻璃混合芯片人字型混合器玻璃芯片是一種可用于通過人字形通道進行ZJ混合液體的有用工具。采用1/4-28UNF螺紋端口和對應的接頭,可允許您在一秒鐘內將該芯片連接到您的實驗裝置!該通用型玻璃芯片通過減少擴散所需的長度并增加溶質在流體之間傳輸的可能性,從而提供了一種快速混合兩種流體的方法。這種人字形芯片使用方便、經濟可靠,可應用于您的所有實驗:● 高強度光學透明玻璃● 標準顯微鏡載玻片尺寸(25×75 mm)● 標準1/4-28UNF螺紋端口● 易于處理● 只需使用1/4-28UNF接頭配件(可用于外徑1/16英寸的導管)將芯片連接到您的裝置即可。工作原理與應用人字形混合器通過誘導混沌流的形成,在低雷諾數條件下顯示加速混合。人字形混合器芯片微通道底部具有不對稱的人字形凹槽的特定圖案,該凹槽能夠產生螺旋流和用于混合兩種液體的混亂攪拌。流經微通道的流體的混合具有很多的應用,例如化學反應中所用試劑溶液的均質化。最近,這種人字形混合器芯片已經在脂質體(封閉的磷脂囊泡)的產生中取得了重要的進步。Cheung等人(Int J Pharma 2019)確實首次報道了使用人字形混合器芯片產生穩定且均勻的(100 nm)聚乙二醇化脂質體。他們研究了不同配方(水溶液、初始脂質濃度、脂質成分和組分)和工藝參數的影響。與其他微流控設備相比,該混合器芯片顯示出更高的通量,更快的混合和更小的洗脫。人字形玻璃混合芯片的規格參數寬度和長度:25 ×75 mm通道深度:0.08 mm通道寬度:0.1到0.5 mm體積:3.3 μL混合體積:0.47 μL混合長度:28.7 mm材質:玻璃連接器:1/4-28接頭在混合部分,有6個混合元件(人字形)形成一個塊(半個循環)和30個塊,因此,總共有15個完整循環。該混合芯片在1到3bar的壓力進行了測試,但也進行了少量的10bar壓力測試。● 人字形的兩個臂是通道尺寸(200 μm)的1/3到2/3● 人字形之間的距離是50 μm● 每個混合元件的寬度是50 μm,高度是30 μm參考論文Calvin C.L.Cheung, Wafa T.Al-Jamal. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. International Journal of Pharmaceutics, Volume 566, 20 July 2019, Pages 687-696. PDF版下載 here您可以根據具體的實驗項目單獨定制納米顆粒或納米脂質體合成芯片,其他設備無需變動,可持續使用。
451人看過
- 2020-09-15 10:53:49高速攝像機在微流控技術中的應用
- 多相微流控系統是包含兩種及兩種以上流體或相態的微流控系統,其流道的典型尺度在納米到亞毫米量級。因其所需流體量少,熱質傳輸響應速率快,產生污染物少等優點,被應用于熱控、生物芯片、YL、化工、能源等各個領域。但因流體細小、速度快,存在研究時無法直接清晰觀測其流體運動狀態和流體運動流速的痛點。 中科院化學所喬燕教授研究多相微流體試驗時,利用千眼狼高速攝像機與顯微鏡組合拍攝觀察微流體中液滴狀態及液體流速。此次試驗將高速攝像機通過C口轉接環連接顯微鏡鏡頭上方,以10倍放大倍數清晰拍攝微流體控制過程,如圖1所示。圖1 試驗現場 高速攝像機可以每秒1000~10000幀的速度記錄,可拍攝整個流體流動過程的動態畫面,并能取得精確的微流體尺寸和速度信息。 試驗中通過千眼狼高速攝像分析系統慢放觀看微流體中液滴運動過程,如圖2所示,并分析得到微流體試驗時液相油相不同配比流速時的實驗數據,包括液滴直徑,液滴數量等相關數據。圖2 慢放幀畫面 多相微流體系統研究對微流控技術發展非常關鍵。如何建立多相微流體系統相關研究基礎理論,解析其反應過程與機制,實現對流體流動及反應的JZ調控,高速攝像機及測量技術可在此研究過程中發揮重要作用。
296人看過
- 2022-12-09 13:39:03微流圖像法粒度儀——微流動態圖像法的重要特點
- 隨著生物醫藥的發展,對不溶性微粒的檢測要求又提出了新的挑戰,就是硅油、蛋白自身的聚集的問題,常規的光阻法和顯微計數法不溶性微粒儀的測試會把蛋白本身判定為不溶性顆粒,如此這兩種測試方式都存在一定的限度。需要新的微流動態圖像法(Flow Imaging)儀器做測試。微流圖像法粒度儀是采用動態流式成像檢測的特點是:樣本在流經樣本檢測池的過程中,在固定的檢測窗口處,由高精密高頻成像儀對流經的樣品進行拍照,獲取一系列的數據照片,通過軟件對所獲取的顆粒照片進行歸類和計數分析的自動化系統。 隨著圖像處理技術的發展以及計算機處理速度的提升,短時間內對大量的顆粒圖像進行分析處理成為了可能。 粒度粒形分析技術可實現對顆粒物進行整體形態學評價,形態成像技術是目前顆粒物性表征中不可缺少的先進技術。 擁有自動、快速、全面的顆粒評價系統,可解決材料顆粒的形態、大小、穩定性在整個開發和制造過程的表征難題,可為過程控制和優化提升提供快速識別的檢測手段。梓夢科技M3000 微流圖像法不溶性微粒儀采用動態圖像法原理(Flow Imaging),符合ISO 13322-2標準要求1)采用變倍遠心鏡頭,輕松實現300nm-1000μm顆粒成像; 2)采用藍色脈沖光,可有效避免運動虛影; 3)軟件自動識別鏡片上的粘附顆粒,避免重復計數;更多功能等您來了解。歡迎寄送樣品過來,給您免費測試。
151人看過
- 2020-12-23 15:03:19第四屆微流控技術應用創新論壇-2020年12月5日到7日
- 第四屆微流控技術應用創新論壇在廣東省深圳市寶安區沙井鎮沙井路118號的維納斯會議酒店國際會展店于2020年12月5日到7日召開。微流控(microfluidics) 是一種精確控制和操控微尺度流體, 以在微納米尺度空間中對流體進行操控為主要特征的科學技術, 具有將生物、 化學等實驗室的基本功能諸如樣品制備、 反應、分離和檢測等縮微到一個幾平方厘米芯片上的能力, 其基本特征和ZD優勢是多種單元技術在整體可控的微小平臺上靈活組合、 規模集成, 是一門涉及工程學、 微電子、 新材料、 物理學、 化學、微加工和生物工程等領域的交叉學科。
256人看過