
- 2025-01-21 09:32:41掃描探針顯微術
- 掃描探針顯微術是一種高分辨率的顯微技術,它利用探針與樣品表面間的相互作用來探測樣品的表面形貌、電學、力學等性質。該技術通過精確控制探針在樣品表面的掃描運動,收集并分析探針與樣品間的相互作用力、電流等信號,進而重構出樣品表面的三維圖像或相關性質分布圖。掃描探針顯微術在材料科學、納米技術、生物學等領域具有廣泛應用,是研究微納尺度物質結構和性能的重要工具。
資源:4482個 瀏覽:8次展開
掃描探針顯微術相關內容
掃描探針顯微術資訊
-
- 80名專家學者齊聚安徽 探討掃描探針顯微術未來發展新方向
- 掃描探針顯微鏡 (SPM)是掃描隧道顯微鏡 (STM)、原子力顯微鏡 (AFM)、近場光學顯微鏡(SNOM)等近幾年發展起來的新型顯微鏡的總稱。
掃描探針顯微術產品
產品名稱
所在地
價格
供應商
咨詢
- 掃描探針顯微系統Dimension Icon
- 國外 歐洲
- ¥3000000
-
瑞科和利(北京)科技有限公司
售全國
- 我要詢價 聯系方式
- Dimension Icon掃描探針顯微系統
- 國外 美洲
- 面議
-
上海科學儀器有限公司
售全國
- 我要詢價 聯系方式
- 探針顯微鏡-量子掃描NV探針顯微鏡
- 國內 安徽
- 面議
-
國儀量子技術(合肥)股份有限公司
售全國
- 我要詢價 聯系方式
- 德國布魯克 掃描探針顯微系統Dimension Icon
- 國外 歐洲
- 面議
-
布魯克納米表面儀器部
售全國
- 我要詢價 聯系方式
掃描探針顯微術問答
- 2022-07-14 15:06:51淺談掃描俄歇納米探針
- 簡介 掃描俄歇納米探針,又稱俄歇電子能譜(Auger Electron Spectroscopy,簡稱AES)是一種表面科學和材料科學的分析技術。根據分析俄歇電子的基本特性得到材料表面元素成分(部分化學態)定性或定量信息。可以對納米級形貌進行觀察和成分表征。近年來,隨著超高真空和能譜檢測技術的發展,掃描俄歇納米探針作為一種極為有效的表面分析工具,為探索和研究表面現象的理論和工藝問題,做出了巨大貢獻,日益受到科研工作者的普遍重視。俄歇電子能譜常常應用在包括半導體芯片成分表征等方向發展歷史 近年來,固體表面分析方法獲得了迅速的發展,它是目前分析化學領域中最活躍的分支之一。它的發展與催化研究、材料科學和微型電子器件研制等有關領域內迫切需要了解各種固體表面現象密切相關。各種表面分析方法的建立又為這些領域的研究創造了很有利的條件。在表面組分分析方法中,除化學分析用光電子能譜以外,俄歇電子能譜是最重要的一種。目前它已廣泛地應用于化學、物理、半導體、電子、冶金等有關研究領域中。 俄歇現象于1925年由P.Auger發現。28 年以后,J.J.Lander從二次電子能量分布曲線中第一次辨認出俄歇電子譜線, 但是由于俄歇電子譜線強度低,它常常被淹沒在非彈性散射電子的背景中,所以檢測它比較困難。 1968年,L.A.Harris 提出了一種“相敏檢測”方法,大大改善了信噪比,使俄歇信號的檢測成為可能。以后隨著能量分析器的完善,使俄歇譜儀達到了可以實用的階段。 1969年圓筒形電子能量分析器應用于AES, 進一步提高了分析的速度和靈敏度。 1970年通過掃描細聚焦電子束,實現了表面組分的兩維分布的分析(所得圖像稱俄歇圖),出現了掃描俄歇微探針儀器。 1972年,R.W.Palmberg利用離子濺射,將表面逐層剝離,獲得了元素的深度分析,實現了三維分析。至此,俄歇譜儀的基本格局已經確定, AES已迅速地發展成為強有力的固體表面化學分析方法,開始被廣泛使用。基本原理 俄歇電子是由于原子中的電子被激發而產生的次級電子。當原子內殼層的電子被激發形成一個空穴時,電子從外殼層躍遷到內殼層的空穴并釋放出光子能量;這種光子能量被另一個電子吸收,導致其從原子激發出來。這個被激發的電子就是俄歇電子。這個過程被稱為俄歇效應。Auger electron emission 入射電子束和物質作用,可以激發出原子的內層電子。外層電子向內層躍遷過程中所釋放的能量,可能以X光的形式放出,即產生特征X射線,也可能又使核外另一電子激發成為自由電子,這種自由電子就是俄歇電子。對于一個原子來說,激發態原子在釋放能量時只能進行一種發射:特征X射線或俄歇電子。原子序數大的元素,特征X射線的發射幾率較大,原子序數小的元素,俄歇電子發射幾率較大,當原子序數為33時,兩種發射幾率大致相等。因此,俄歇電子能譜適用于輕元素的分析。 如果電子束將某原子K層電子激發為自由電子,L層電子躍遷到K層,釋放的能量又將L層的另一個電子激發為俄歇電子,這個俄歇電子就稱為KLL俄歇電子。同樣,LMM俄歇電子是L層電子被激發,M層電子填充到L層,釋放的能量又使另一個M層電子激發所形成的俄歇電子。 只要測定出俄歇電子的能量,對照現有的俄歇電子能量圖表,即可確定樣品表面的成份。由于一次電子束能量遠高于原子內層軌道的能量,可以激發出多個內層電子,會產生多種俄歇躍遷,因此,在俄歇電子能譜圖上會有多組俄歇峰,雖然使定性分析變得復雜,但依靠多個俄歇峰,會使得定性分析準確度很高,可以進行除氫氦之外的多元素一次定性分析。同時,還可以利用俄歇電子的強度和樣品中原子濃度的線性關系,進行元素的半定量分析,俄歇電子能譜法是一種靈敏度很高的表面分析方法。其信息深度為5nm以內,檢出限可達到0.1%atom。是一種很有用的分析方法。系統組成 AES主要由超高真空系統、肖特基場發射電子槍、CMA同軸式筒鏡能量分析器、五軸樣品臺、離子槍等組成。以ULVAC-PHI的PHI 710舉例,其核心分析能力為25 kV肖特基熱場發射電子源,與筒鏡式電子能量分析器CMA同軸。伴隨著這一核心技術是閃爍二次電子探測器、 高性能低電壓浮式氬濺射離子槍、高精度自動的五軸樣品臺和PHI創新的儀器控制和數據處理軟件包:SmartSoft AES ? 和 MultiPak ?。并且,目前ULVAC-PHI的PHI 710可以擴展冷脆斷樣品臺、EDS、EBSD、BSE、FIB等技術,深受廣大用戶認可。PHI710激發源,分析器和探測器結構示意圖: 為滿足當今納米材料的應用需求,PHI 710提供了最高穩定性的 AES 成像平臺。隔聲罩、 低噪聲電子系統、 穩定的樣品臺和可靠的成像匹配軟件可實現 AES對納米級形貌特征的成像和采譜。 真正的超高真空(UHV)可保證分析過程中樣品不受污染,可進行明確、準確的表面表征。測試腔室的真空是由差分離子泵和鈦升華泵(TSP)抽氣實現的。肖特基場發射源有獨立的抽氣系統以確保發射源壽命。最新的磁懸浮渦輪分子泵技術用于系統粗抽,樣品引入室抽真空,和差分濺射離子槍抽氣。為了連接其他分析技術,如EBSD、 FIB、 EDS 和BSE,標配是一個多技術測試腔體。 PHI 710 是由安裝在一個帶有 Microsoft Windows ? 操作系統的專用 PC 里的PHI SmartSoft-AES 儀器操作軟件來控制的。所有PHI電子光譜產品都包括執行行業標準的 PHI MultiPak 數據處理軟件用于獲取數據的最大信息。710 可應用互聯網,使用標準的通信協議進行遠程操作。AES的應用 掃描俄歇納米探針可分析原材料(粉末顆粒,片材等)表面組成,晶粒觀察,金相分布,晶間晶界偏析,又可以分析材料表面缺陷如納米尺度的顆粒物、磨痕、污染、腐蝕、摻雜、吸附等,還具備深度剖析功能表征鈍化層,包覆層,摻雜深度,納米級多層膜層結構等。AES的分析深度4-50 ?,二次電子成像的空間分辨可達 3納米,成分分布像可達8納米,分析材料表面元素組成 (Li ~ U),是真正的納米級表面成分分析設備。可滿足合金、催化、半導體、能源電池材料、電子器件等材料和產品的分析需求。AES 應用的幾種例子,從左到右為半導體FIB-cut,鋰電陰極向陶瓷斷面分析小結本文小編粗淺的介紹了俄歇電子能譜AES的一些基礎知識,后續我們還會提供更有價值的知識和信息,希望大家持續關注“表面分析家”!
337人看過
- 2025-04-23 14:15:17接觸角測量儀探針怎么調
- 接觸角測量儀探針的調整是確保測量精度和儀器性能的關鍵步驟。在進行接觸角測量時,探針的正確調整可以顯著影響測量結果的準確性與一致性。本文將詳細介紹如何調節接觸角測量儀的探針,以確保測量過程中各項參數的佳配置,并幫助用戶避免常見的操作失誤。通過正確的操作,不僅能提高測量效率,還能延長儀器的使用壽命。因此,掌握探針調整的技巧,對每一位使用接觸角測量儀的工程師和技術人員來說,都是至關重要的。 接觸角測量儀探針的調整通常涉及多個方面,其中包括探針的垂直度、位置以及與樣品表面接觸的角度。為了確保探針能夠精確地接觸到樣品表面,必須調整儀器的探針支撐架。通過調節支撐架的角度和高度,可以保證探針始終與樣品表面垂直,從而減少因角度不準確引起的測量誤差。 接觸角測量儀的探針必須精確定位,以確保每次實驗中探針與液滴接觸的條件一致。通常,這需要通過微調螺絲來實現精細定位,確保探針的每次接觸位置不會偏離設定的標準位置。如果探針位置發生偏差,液滴的分布情況將不均勻,從而影響接觸角的準確度。 在進行探針調整時,還需要考慮環境因素對測量結果的影響,例如溫度、濕度以及空氣流動等。任何這些因素的變化都可能導致測量值的波動。因此,在調節探針時,確保操作環境穩定,也是確保接觸角測量結果準確性的重要步驟。 接觸角測量儀探針的調節是確保實驗數據可靠性的基礎。通過合理的調整方法和操作技巧,能夠有效地提高測量精度,并保證每次實驗結果的一致性。在實際操作中,專業人員應根據儀器的具體要求和操作手冊,謹慎調整探針的各項參數,避免因不當調整導致測量誤差。
2人看過
- 2025-04-23 14:15:19電子探針顯微分析方法有哪些?
- 電子探針顯微分析方法 電子探針顯微分析方法(Electron Probe Microanalysis, EPMA)是一種利用電子束與樣品相互作用原理來進行元素分析和成分分析的技術。該技術廣泛應用于材料科學、地質學、冶金學等領域,是研究微觀結構、元素分布以及樣品成分的關鍵工具。通過高精度的分析,電子探針顯微分析方法能夠提供極為詳盡的樣品元素信息,并為科學研究和工業應用提供可靠的數據支持。本文將介紹電子探針顯微分析的基本原理、應用領域及其優勢。 電子探針顯微分析的基本原理 電子探針顯微分析方法基于電子束與樣品相互作用后產生的各種信號,如特征X射線、二次電子和背散射電子等。通過測量這些信號,能夠獲得樣品的元素組成和空間分布信息。具體來說,電子探針顯微分析通過聚焦電子束在樣品表面激發特征X射線,這些X射線的能量與元素的原子結構相對應,因此可以通過對X射線進行能量分析來確定樣品中各元素的種類和含量。 在實際操作中,電子束的能量通常設置在10-30kV之間,能夠深入樣品的表面層并激發X射線。這些X射線的強度與樣品中相應元素的濃度成正比,通過對X射線譜圖的定量分析,研究人員可以精確地測定元素的分布和含量。 電子探針顯微分析的應用領域 材料科學 電子探針顯微分析技術在材料科學中有著廣泛應用。尤其是在金屬合金、陶瓷、復合材料等的成分分析中,EPMA能夠提供高空間分辨率和定量分析能力。通過對材料微觀結構的研究,科學家們可以了解材料的性能、相變以及在不同條件下的行為,從而優化材料的設計和性能。 地質學 在地質學研究中,電子探針顯微分析方法被廣泛應用于礦物學和巖石學研究。通過分析礦物和巖石樣品的元素組成,EPMA能夠幫助地質學家解讀地質過程、巖漿活動、礦產資源的成因以及沉積環境等信息,為資源勘探和環境保護提供有力支持。 生命科學 在生物醫學領域,電子探針顯微分析也有著重要的應用。通過對細胞和組織樣本進行元素分析,研究人員可以探索生物體內微量元素的分布,幫助揭示生物體的代謝過程和疾病機制。例如,通過EPMA分析癌細胞與正常細胞中的元素差異,有助于癌癥早期診斷和策略的優化。 電子探針顯微分析的優勢 與傳統的分析方法相比,電子探針顯微分析在空間分辨率和分析精度方面具有明顯優勢。EPMA具有極高的空間分辨率,能夠對微米甚至納米尺度的樣品進行高精度分析,適用于復雜的微觀結構研究。EPMA具備較強的元素分析能力,能夠對多種元素進行定性和定量分析,尤其適合于分析復雜樣品中的微量元素。EPMA分析無需對樣品進行復雜的化學預處理,能夠直接在固體樣品表面進行分析,具有較高的分析效率。 總結 電子探針顯微分析方法是一項高精度的材料分析技術,憑借其的空間分辨率和元素分析能力,在多個領域發揮著重要作用。從材料科學到生命科學,EPMA技術為研究者提供了深入理解樣品成分和微觀結構的強大工具。隨著技術的不斷進步,電子探針顯微分析在科研和工業中的應用前景將更加廣闊,并為推動科技創新和產業發展作出更大的貢獻。
38人看過
- 2025-04-25 14:45:17超聲探傷儀掃描速度怎么調
- 超聲探傷儀掃描速度怎么調? 超聲探傷儀作為一種常用于工業檢測的重要設備,能夠通過超聲波技術對物體進行非破壞性檢測,廣泛應用于金屬、焊接、復合材料等領域。在使用超聲探傷儀時,掃描速度的調節直接影響到檢測效果的準確性和效率。合理的掃描速度不僅能提升檢測精度,還能有效減少檢測時間,提高工作效率。本文將詳細探討超聲探傷儀掃描速度的調節方法,幫助您更好地理解如何在不同的檢測需求下進行優化調整。 超聲探傷儀的掃描速度設置與多個因素有關,包括被檢測材料的特性、探頭類型、檢驗標準以及具體的檢測任務要求。不同的材料和結構可能需要不同的掃描速度,以保證探測信號的清晰度和準確性。在實際操作中,過快的掃描速度可能導致信號丟失或干擾,從而影響檢測結果的準確性;而過慢的掃描速度則會增加工作時間,降低工作效率。因此,選擇合適的掃描速度,既要考慮信號質量,又要兼顧操作效率,是超聲探傷儀操作中的關鍵。 超聲探傷儀的掃描速度一般通過儀器的操作面板進行設置,具體調節方式因設備型號而異。通常來說,掃描速度的調節可以通過控制儀器的掃描步進、探頭移動速率和數據采集頻率來實現。需要確保探頭與檢測面之間的接觸良好,避免因接觸不充分造成信號的丟失。調節掃描速度時,需要根據被檢測物體的尺寸、厚度以及材料的聲速特性進行綜合考慮。對于厚度較大的工件,可以適當減慢掃描速度,以保證超聲波信號能夠穿透并準確反映物體內部的缺陷。 超聲探傷儀的掃描速度調節是一個綜合考量的過程,需要根據不同的檢測對象和需求進行精細調整。在操作過程中,建議定期進行設備的校準和測試,以確保設備的精確性和可靠性。在選擇合適的掃描速度后,操作人員應根據檢測標準和經驗,不斷優化調整,以達到佳的檢測效果。 為了提高超聲探傷儀的使用效果,熟練掌握其掃描速度的調節技巧是每位操作人員必須具備的技能之一。通過對速度的合理控制,能夠在確保檢測質量的提升工作效率,達到更好的檢測效果。
4人看過
- 2025-01-02 12:15:11聲學掃描顯微鏡探頭怎么用
- 聲學掃描顯微鏡探頭怎么用 聲學掃描顯微鏡(AFM)作為一項先進的成像技術,廣泛應用于材料科學、生物醫學、半導體等領域。而其中,探頭的使用是實現精細成像的關鍵步驟之一。本文將詳細介紹聲學掃描顯微鏡探頭的使用方法,幫助科研人員更好地理解如何通過合適的操作,優化顯微鏡的性能,獲得高質量的樣品圖像與數據。 1. 聲學掃描顯微鏡探頭的基本構造 聲學掃描顯微鏡的探頭通常由一個極其敏感的微小探針、彈性支架和一個電子系統組成。其主要作用是利用超聲波或其他聲學信號與樣品表面相互作用,從而捕捉物質表面的微小變化。探頭的極為細小,可以觸及單個分子級別的細節,因此精確的操作至關重要。 2. 如何正確使用聲學掃描顯微鏡探頭 2.1 設置探頭 在使用聲學掃描顯微鏡之前,首先需要正確安裝探頭。根據不同的顯微鏡型號,探頭的安裝方式有所不同,通常需要根據廠商提供的操作手冊進行安裝。安裝時要確保探頭方向與樣品表面平行,并且探頭與樣品之間的距離要適中。探頭與樣品的接觸力通常較小,以避免損傷探針或樣品。 2.2 調整掃描參數 在安裝好探頭之后,需要根據樣品的特點調整合適的掃描參數。包括掃描速度、分辨率、探針的振幅等。掃描速度過快可能導致圖像模糊,過慢則可能增加數據采集時間,影響實驗效率。根據樣品的硬度和表面狀態,適當調整掃描的探頭力度,以保證得到高精度的成像結果。 2.3 進行樣品掃描 當探頭正確安裝并且掃描參數設置好之后,便可以開始對樣品進行掃描。在此過程中,操作人員需要保持穩定的工作環境,避免外界震動或溫度波動影響探頭的精度。探頭通過其振動與樣品的相互作用,將表面信息轉化為電信號并反饋到顯微鏡系統中,進而生成高分辨率的圖像。 2.4 數據分析與處理 掃描完成后,所獲得的數據可以通過專用軟件進行處理和分析。根據圖像的需要,可能需要對數據進行去噪、增強對比度等后處理操作,以提高圖像質量并進行進一步的科學分析。此時,操作人員要特別注意軟件中各類參數的設置,確保分析結果的準確性。 3. 聲學掃描顯微鏡探頭的常見問題與解決方法 在使用過程中,聲學掃描顯微鏡探頭可能會遇到一些問題,比如探頭損傷、圖像噪點過多等。常見的解決方法包括: 探頭損傷:探頭尖端容易受損,尤其是在操作過程中與樣品表面發生碰撞時。避免過度施加壓力或選擇硬度較高的樣品進行掃描,可以有效延長探頭的使用壽命。 圖像噪點問題:噪點過多可能是由于探頭不穩定或掃描參數設置不當導致的。可以通過調整掃描速度或使用更高質量的探頭來改善圖像質量。 4. 結語 聲學掃描顯微鏡探頭的正確使用對實驗結果至關重要。只有在安裝、參數調整和掃描操作中細心把控,才能確保獲得高分辨率的成像數據,進而推動科研工作的發展。掌握這些基本操作方法,將有助于在材料科學、生物醫學等多個領域實現精確的微觀探測,為科研創新提供有力支持。
17人看過